The loop structure and the RNA helicase p72/DDX17 influence the processing efficiency of the mice miR-132
نویسندگان
چکیده
miRNAs are small RNAs that are key regulators of gene expression in eukaryotic organisms. The processing of miRNAs is regulated by structural characteristics of the RNA and is also tightly controlled by auxiliary protein factors. Among them, RNA binding proteins play crucial roles to facilitate or inhibit miRNA maturation and can be controlled in a cell, tissue and species-specific manners or in response to environmental stimuli. In this study we dissect the molecular mechanism that promotes the overexpression of miR-132 in mice over its related, co-transcribed and co-regulated miRNA, miR-212. We have shown that the loop structure of miR-132 is a key determinant for its efficient processing in cells. We have also identified a range of RNA binding proteins that recognize the loop of miR-132 and influence both miR-132 and miR-212 processing. The DEAD box helicase p72/DDX17 was identified as a factor that facilitates the specific processing of miR-132.
منابع مشابه
Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential.
The p68 (DDX5) and p72 (DDX17) proteins are members of the DEAD-box (DDX) family of RNA helicases. We show that both p68 and p72 are overexpressed in breast tumors. Bioinformatical analysis revealed that the SUMO pathway is upregulated in breast tumors and that both p68 and p72 contain one consensus sumoylation site, implicating that sumoylation of p68 and p72 increases during breast tumorigene...
متن کاملStem-Loop Recognition by DDX17 Facilitates miRNA Processing and Antiviral Defense
DEAD-box helicases play essential roles in RNA metabolism across species, but emerging data suggest that they have additional functions in immunity. Through RNAi screening, we identify an evolutionarily conserved and interferon-independent role for the DEAD-box helicase DDX17 in restricting Rift Valley fever virus (RVFV), a mosquito-transmitted virus in the bunyavirus family that causes severe ...
متن کاملRedundant role of DEAD box proteins p68 (Ddx5) and p72/p82 (Ddx17) in ribosome biogenesis and cell proliferation
The DEAD box proteins encoded by the genes ddx5 (p68) and ddx17 (isoforms p72 and p82) are more closely related to each other than to any other member of their family. We found that p68 negatively controls p72/p82 gene expression but not vice versa. Knocking down of either gene does not affect cell proliferation, in case of p68 suppression, however, only on condition that p72/p82 overexpression...
متن کاملThe RNA helicase Ddx5/p68 binds to hUpf3 and enhances NMD of Ddx17/p72 and Smg5 mRNA
Non-sense-mediated mRNA decay (NMD) is a mechanism of translation-dependent mRNA surveillance in eukaryotes: it degrades mRNAs with premature termination codons (PTCs) and contributes to cellular homeostasis by downregulating a number of physiologically important mRNAs. In the NMD pathway, Upf proteins, a set of conserved factors of which Upf1 is the central regulator, recruit decay enzymes to ...
متن کاملThe DEAD box RNA helicases p68 (Ddx5) and p72 (Ddx17): novel transcriptional co-regulators.
DEAD box [a motif named after its amino acid sequence (Asp-Glu-Ala-Asp)] RNA helicases are known to play key roles in all cellular processes that require modulation of RNA structure. However, in recent years, several of these proteins have been found to function in transcriptional regulation. In the present paper, we shall review the literature demonstrating the action of p68 and, where data ar...
متن کامل